Name: \qquad
Section: \qquad

1. Determine whether or not the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ given below are linearly independent. Use row reduction.

$$
\begin{aligned}
& \mathbf{v}_{1}=(1,0,1,0) \\
& \mathbf{v}_{2}=(1,-2,1,2) \\
& \mathbf{v}_{3}=(0,1,2,1) \\
& \mathbf{v}_{4}=(2,1,9,5)
\end{aligned}
$$

2. For which values of a, b, and c does the following system of equations have a solution? Use row reduction. (Hint: You should find an equation that a, b, and c need to satisfy for the system to be consistent.)

$$
\left\{\begin{array}{c}
x+y=a \\
2 x-3 y=b \\
6 x-4 y=c
\end{array}\right.
$$

3. True/False: Circle the appropriate choice for each question. Circle True only if the statement is always true, and false if the statement is at least sometimes false.

True False If a matrix has more rows than columns, then $A \mathbf{x}=\mathbf{b}$ has a solution for all \mathbf{b}. True False If two vectors are linearly independent, then one is a multiple of the other.

